NASA/TM-2001-210754 # Achieving QoS for Aeronautical Telecommunication Networks Over Differentiated Services Haowei Bai and Mohammed Atiquzzaman The University of Dayton, Dayton, Ohio William Ivancic Glenn Research Center, Cleveland, Ohio National Aeronautics and Space Administration Glenn Research Center # Acknowledgments The authors thank NASA Glenn Research Center for support of this project. Faruque Ahamed carried out some initial work on this project. Available from NASA Center for Aerospace Information 7121 Standard Drive Hanover, MD 21076 Price Code: A03 National Technical Information Service 5285 Port Royal Road Springfield, VA 22100 Price Code: A03 # Achieving QoS for Aeronautical Telecommunication Networks over Differentiated Services ¹ # Haowei Bai and Mohammed Atiquzzaman Department of Electrical and Computer Engineering The University of Dayton, Dayton, Ohio 45469-0226 Tel:(937) 229 3183, Fax:(937) 229 4529 E-mail: baihaowe@flyernet.udayton.edu, atiq@udayton.edu # William Ivancic National Aeronautics and Space Administration Glenn Research Center 21000 Brookpark Rd. MS 54-8, Cleveland, OH 44135 #### Abstract Aeronautical Telecommunication Network (ATN) has been developed by the International Civil Aviation Organization to integrate Air-Ground and Ground-Ground data communication for aeronautical applications into a single network serving Air Traffic Control and Aeronautical Operational Communications [1]. To carry time critical information required for aeronautical applications, ATN provides different Quality of Services (QoS) to applications. ATN has therefore, been designed as a standalone network which implies building an expensive separate network for ATN. However, the cost of operating ATN can be reduced if it can be run over a public network such as the Internet. Although the current Internet does not provide QoS, the next generation Internet is expected to provide QoS to applications. The *objective* of this paper is to investigate the possibility of providing QoS to ATN applications when it is run over the next generation Internet. Differentiated Services (DiffServ), one of the protocols proposed for the next generation Internet, will allow network service providers to offer different QoS to customers. Our results show that it is possible to provide QoS to ATN applications when they run over a DiffServ backbone. ¹The work reported in this project was supported by NASA grant no. NAG3-2318 # 1 Introduction The International Civil Aviation Organization (ICAO) has developed the Aeronautical Telecommunication Network (ATN) as a commercial infrastructure to integrate Air-Ground and Ground-Ground data communication into a single network to serve air traffic control and aeronautical operational communications [1]. One of the objectives of ATN internetwork is to accommodate different Quality of Service (QoS) required by ATSC (Air Traffic Services Communication) and AINSC (Aeronautical Industry Service Communication) applications, and the organizational policies for interconnection and routing specified by each participating organization. In the ATN, priority has the essential role of ensuring that high priority safety related and time critical data are not delayed by low priority non-safety data, especially when the network is overloaded with low priority data. The time critical information carried by ATN and the QoS required by ATN applications has led to the development of the ATN as an expensive independent network. The largest public network, the Internet, only offers point-to-point *best-effort* service to the users and hence is not suitable for carrying time critical ATN traffic. However, the rapid commercialization of the Internet has given rise to demands for QoS over the Internet. QoS is generally implemented by different classes of service contracts for different users. A service class may provide low-delay and low-jitter services for customers who are willing to pay a premium price to run high-quality applications, such as, real-time multimedia. Another service class may provide predictable services for customers who are willing to pay for reliability. Finally, the *best-effort* service provided by current Internet will remain for those customers who need only connectivity. The Internet Engineering Task Force (IETF) has proposed a few models to meet the demand for QoS. Notable among them are the Integrated Services (IntServ) model [2] and Differentiated Services (DiffServ) [3] model. The IntServ model is characterized by resource reservation; before data is transmitted, applications must set up paths and reserve resources along the path. This gives rise to scalability issues in the core routers of large networks. The DiffServ model is currently being standardized to overcome the above scalability issue, and to accommodate the various service guarantees required for time critical applications. The DiffServ model utilizes six bits in the TOS (Type of Service) field of the IP header to mark a packet for being eligible for a particular forwarding behavior. It The model does not require significant changes to the existing infrastructure, and does not need too many additional protocols. A significant cost saving can be achieved if the ATN protocol could be run over the next generation Internet protocol as shown in Figure 1. In this paper, we are interested in developing a framework to run ATN over the next generation Internet. This requires appropriate mapping of parameters at the edge routers between the two networks. The *objective* of this paper is to investigate the QoS that can be achieved when ATN runs over the DiffServ network in the next generation Internet. Based on the similarity between an IP packet and an ATN packet, our *approach* is to add a mapping function to the edge DiffServ router so that the traffic flows coming from ATN can be appropriately mapped into the corresponding *Behavior Aggregates* of DiffServ, and then marked with the appropriate DSCP (Differentiated Service Code Point) for routing in DiffServ domain. We show that, without making any significant changes to the ATN or DiffServ infrastructure and without any additional protocols or signaling, it is possible to provide QoS to ATN applications when ATN runs over a DiffServ network. The *significance* of this work is that considerable cost savings could be possible if the next generation Internet backbone can be used to connect ATN subnetworks. The main *contributions* of this paper can be summarized as follows: - Propose a framework to run ATN over the DiffServ network. - Show that QoS can be achieved by end ATN applications when run over the next generation Internet. The rest of this paper is organized as follows. In Sections 2 and 3, we briefly present the main features of ATN and DiffServ, respectively. In Section 4, we describe our approach for the interconnection of ATN and DiffServ and the simulation configuration to test the effectiveness of our approach. In Section 5, we analyze our simulation results to show that QoS can be provided to end applications in the ATN domain. Concluding remarks are finally given in Section 6. Figure 1: Interconnection between ATN and Differentiated Services. # 2 Aeronautical Telecommunication Network (ATN) In the early 1980s, the International Civil Aviation Organization (ICAO) recognized the increasing limitations of the present air navigation systems and the need for improvements to take civil aviation into the 21st century. The need for changes in the current global air navigation system is due to two principal factors: - The present and growing air traffic demand which the current system will be unable to cope. - The need for global consistency in the provisioning of air traffic services during the progression towards a seamless air traffic management system. The above factors gave rise to the concept of the Aeronautical Telecommunication Network (ATN) [4]. ATN is both a ground-based network providing communications between ground-based users, and an air-ground network providing communications between airborne and ground users. It was always intended that ATN should be built on existing technologies instead of inventing new approaches. The Internet approach was seen as the most suitable approach, and was therefore selected as the basis for the ATN. ATN is made up of End Systems, Intermediate Systems, ground-ground subnetworks and air-ground subnetworks as shown in Figure 1. # 2.1 Priority in ATN The ATN has been designed to provide a high reliability/availability network by ensuring that there is no single point of failure, and by permitting the availability of multiple alternative routes to the same destination with dynamic switching between alternatives. Every ATN user data is given a relative priority on the network in order to ensure that low priority data does not impede the flow of high priority data. The purpose of priority is to signal the relative importance and (or) precedence of data, such that when a decision has to be made as to which data to act first, or when contention for access to shared resources has to be resolved, the decision or outcome can be determined unambiguously and in line with user requirements both within and between applications. Priority in ATN is signaled separately by the application in the transport layer, network layer, and in ATN subnetworks, which gives rise to Transport Priority, Network Priority and Subnet Priority [5]. Network priority is used to manage the access to network resources. During periods of high network utilization, higher priority NPDUs (Network Protocol Data Units) may therefore be expected to be more likely to reach their destination (i.e. be less likely to be discarded by a congested router), and to have a lower transit delay (i.e. be more likely to be selected for transmission from an outgoing queue) than lower priority packets. In this paper, we focus on network priority which determines the sharing of limited network resources. # 2.2 ATN packet format Figure 2 shows the correspondence between the fields of an IP packet header and the network layer packet header of ATN. It is seen that the fields of IP and ATN packets carry similar information, and thus can almost be mapped to each other. This provides the possibility for mapping ATN to DiffServ (which uses the IP packet header except for the Type of Service byte) to achieve the required QoS when they are interconnected. The NPDU header of an ATN packet contains an option part including an 8-bit field named *Priority* which indicates the relative priority of the NPDU [1]. The values 0000 0001 through 0000 1110 are to be used to indicate the priority in an increasing order. The value 0000 0000 Figure 2: Similarity between an IP packet and an ATN packet indicates normal priority. ## 3 Differentiated Services Differentiated services (Diffserv) is intended to enable the deployment of scalable service discrimination in the Internet without the need for per-flow state and signaling at every hop. The premise of Diffserv networks is that routers in the core network handle packets from different traffic streams by forwarding them using different per-hop behaviors (PHBs). The PHB to be applied is indicated by a Diffserv Codepoint (DSCP) in the IP header of the packet [6]. The advantage of such a mechanism is that several different traffic streams can be aggregated to one of a small number of behavior aggregates (BA) which are each forwarded using the same PHB at the router, thereby simplifying the processing and associated storage [7]. There is no signaling or processing since QoS (Quality of Service) is invoked on a packet-by-packet basis [7]. The Diffserv architecture is composed of a number of functional elements, including a small set of per-hop forwarding behaviors, packet classification functions, and traffic conditioning functions which includes metering, marking, shaping and policing. The functional block diagram of a typical Figure 3: Major functional block diagram of a router. Diffserv router is shown in Figure 3 [7]. This architecture provides *Expedited Forwarding* (EF) service and *Assured Forwarding* (AF) service in addition to *best-effort* (BE) service as described below. # 3.1 Expedited Forwarding (EF) This service is also been described as *Premium Service*. The EF service provides a low loss, low latency, low jitter, assured bandwidth, end-to-end service for customers [8]. Loss, latency and jitter are due to the queuing experienced by traffic while transiting the network. Therefore, providing low loss, latency and jitter for some traffic aggregate means there are no queues (or very small queues) for the traffic aggregate. At every transit node, the aggregate of the EF traffic's maximum arrival rate must be less than its configured minimum departure rate so that there is almost no queuing delay for these premium packets. Packets exceeding the peak rate are shaped by the traffic conditioners to bring the traffic into conformance. # 3.2 Assured Forwarding This service provides a reliable services for customers, even in times of network congestion. Classification and policing are first done at the edge routers of the DiffServ network. The assured service Figure 4: AF classes with drop precedence levels traffic is considered *in*-profile if the traffic does not exceed the bit rate allocated for the service; otherwise, the excess packets are considered *out*-of-profile. The *in*-profile packets should be forwarded with high probability. However, the *out*-of-profile packets are not delivered with as high probability as the traffic that is within the profile. Since the network does not reorder packets that belong to the same microflow, all packets, irrespective of whether they are *in*-profile or *out*-of-profile, are put into an *ussured queue* to avoid out-of-order delivery. Assured Forwarding provides the delivery of packets in four independently forwarded AF classes. Each class is allocated with a configurable minimum amount of buffer space and bandwidth. Each class is in turn divided into different levels of drop precedence. In the case of network congestion, the drop precedence determines the relative importance of the packets within the AF class. Figure 4 [9] shows four different AF classes with three levels of drop precedence. #### 3.3 Best Effort This is the default service available in DiffServ, and is also deployed by the current Internet. It does not guarantee any bandwidth to the customers, but can only get the bandwidth available. Packets are queued when buffers are available and dropped when resources are over committed. # 4 ATN over Differentiated Services In this section, we describe in detail the mapping strategy adopted in this paper to connect the ATN and DS domains followed by the simulation configuration we have used to test the mapping. Figure 5: Mapping function for ATN over Differentiated Service. # 4.1 Mapping Function Our goal is to use differentiated services to achieve QoS for ATN to integrate Air/Ground and Ground/Ground data communications into a global Internet serving Air Traffic Control (ATC) and Aeronautical Operations Communications (AOC). The main constraint is that the PHB treatment of packets along the path in the DiffServ domain must approximate the QoS offered in the ATN network. In this paper, we satisfy the above requirement by appropriately mapping the traffic coming from ATN into the corresponding *Behavior Aggregates*, and then marking the packets with the appropriate DSCP for routing in the DiffServ domain. To achieve the above goal, we introduce a mapping function at the boundary router between the ATN and DiffServ domain as shown in Figure 5. Packets with different priorities from the ATN domain are first mapped to the corresponding PHBs in the DiffServ domain by appropriately assigning a DSCP according to the mapping function. The packets are then routed in the DiffServ domain where they receive treatment based on their DSCP code. The packets are grouped to BAs in the DiffServ domain. Table 1 shows an example mapping function which has been used in our simulation. Table 1: An example mapping function used in our simulation. | ATN Priority Code | Priority | PHB | DSCP | |-------------------|----------|------|--------| | 0000 0000 | Normal | BE | 000000 | | 0000 0111 | Medium | AF11 | 001010 | | 0000 1110 | High | EF | 101110 | Figure 6: Network configuration # 4.2 Simulation Configuration To test the effectiveness of our proposed mapping strategy between ATN and DiffServ and to determine the QoS that can be provided to ATN applications, we carried out simulation using the ns (Version 2.1b6) simulation tool from Berkeley [10]. The network configuration used in our simulation is shown in Figure 6. Ten ATN sources were used in our simulation, the number of sources generating high, medium and normal priority packets were two, three and five respectively. Ten ATN sinks served as destinations for the ATN sources. All the links in Figure 6 are labeled with a (bandwidth, propagation delay) pair. For the purpose of ATN over Diffserv, the mapping function shown in Table 1 has been integrated into the edge DiffServ router. CBR (Constant Bit Rate) traffic was used for all ATN sources in our simulation so that the relationship between the bandwidth utilization and bandwidth allocation can be more easily evaluated. Inside the DiffServ router, EF queue was configured as a simple *Priority Queue* with *Tail Drop.* AF queue was configured as RIO queue and BE queue as a RED [11] queue. The queue weights of EF, AF and BE queues were set to 0.4, 0.4 and 0.2 respectively. Since the bandwidth of the bottleneck link between two DiffServ routers is 5 Mb, the above scheduling weights implies bandwidth allocations of 2 Mb, 2 Mb and 1 Mb for the EF, AF and BE links respectively during periods of congestion at the edge router. # 5 Simulation Results In this section, results obtained from our simulation experiments are presented. The criteria used to evaluate our proposed strategy are described followed by the description of our experiments and numerical results. #### 5.1 Performance Criteria To show the effectiveness of our mapping strategy in providing QoS to end ATN applications, we have used goodput, queue size and drop ratio as the performance criteria. In the next section, we present the results of measurements of the above quantities from our simulation experiments. #### 5.2 Simulation Cases We use the following four simulation cases to determine the QoS obtained by ATN sources. - Case 1: No congestion: The traffic generated by the each high, medium and normal priority sources were set to 1 Mb, 0.666 Mb and 0.2 Mb respectively. According to the network configuration described in Section 4.2, there are two, three and five sources generating high, medium and normal priority traffic of 2Mb, 2Mb and 1Mb respectively. The amount of traffic of different priority are equal to the corresponding output link bandwidth assigned by scheduler described in Section 4.2. Under this scenario, there should not be any significant congestion at the edge DiffServ router because the sum of the traffic from the sources is equal to the bandwidth of the bottleneck link. - Case 2: Normal priority traffic gets into congestion: The traffic generated by the each high, medium and normal priority sources were set to 1 Mb, 0.666 Mb and 0.6 Mb respectively. According to the network configuration described in Section 4.2, there are two, three and five sources generating high, medium and normal priority traffic of 2Mb, 2Mb and 3Mb respectively. The amount of traffic of high and medium priority are still equal to the corresponding output link bandwidth assigned by scheduler described in Section 4.2. However, the amount of traffic of normal priority is greater than its corresponding output link bandwidth. Under this scenario, the *normal priority traffic gets into congestion* at the edge Diffserv router. - Case 3: Medium priority traffic gets into congestion: The traffic generated by the each high, medium and normal priority sources were set to 1Mb, 1.333 Mb and 0.2 Mb respectively. According to the network configuration described in Section 4.2, there are two, three and five sources generating high, medium and normal priority traffic of 2Mb, 4Mb and 1Mb respectively. The amount of traffic of high and normal priority are still equal to the corresponding output link bandwidth assigned by scheduler described in Section 4.2. However, the amount of traffic of medium priority is greater than its corresponding output link bandwidth. Under this scenario, the medium priority traffic gets into congestion at the edge Diffserv router. - Case 4: Both medium and normal priority traffics get into congestion: The traffic generated by the each high, medium and normal priority sources were set to 1Mb, 1.333 Mb and 0.6 Mb respectively. According to the network configuration described in Section 4.2, there are two, three and five sources generating high, medium and normal priority traffic of 2Mb, 4Mb and 3Mb respectively. The amount of traffic of high priority is still equal to the corresponding output link bandwidth assigned by scheduler described in Section 4.2. However, the amount of traffic of both medium and normal priority are greater than their corresponding output link bandwidth. Under this scenario, both medium and normal priority traffics get into congestion at the edge Diffserv router. ## 5.3 Numerical Results Table 2 shows the goodput of each ATN source for four different cases described in Section 5.2. Table 3 shows the drop ratio measured at the scheduler for four cases of the three different types of ATN sources. Figures 7, 8, 9 and 10 show the queue size for each of the four case (from Case 1 to Case 4), from which the queuing delay and jitter can be evaluated. Table 2: Goodput of each ATN source (Unit: Kb/S) | Sources | | Case 1 | Case 2 | Case 3 | Case 4 | |-------------------------|----------|----------|----------|----------|----------| | High priority Sources | Source 0 | 999.9990 | 999.9990 | 999.9990 | 999.9990 | | | Source 1 | 999.9990 | 999.9990 | 999.9990 | 999.9990 | | | Source 2 | 666.6660 | 666.6660 | 668.2409 | 668.4719 | | Medium priority Sources | Source 3 | 666.6660 | 666.6660 | 667.3379 | 667.5270 | | | Source 4 | 666.6660 | 666.6660 | 664.4189 | 663.9990 | | | Source 5 | 200.0039 | 199.6469 | 200.0039 | 199.4790 | | | Source 6 | 200.0039 | 201.8520 | 200.0039 | 201.9780 | | Normal priority Sources | Source 7 | 200.0039 | 202.4190 | 200.0039 | 201.6840 | | | Source 8 | 199.9830 | 199.8779 | 199.9830 | 200.4660 | | | Source 9 | 200.0039 | 196.2030 | 200.0039 | 196.3920 | Table 3: Drop ratio of ATN traffic. | Type of traffic | Case 1 | Case 2 | Case 3 | Case 4 | |-------------------------|----------|----------|----------|----------| | High priority Traffic | 0.000000 | 0.000000 | 0.000000 | 0.000000 | | Medium priority Traffic | 0.000000 | 0.000000 | 0.499817 | 0.499834 | | Normal priority Traffic | 0.000000 | 0.665638 | 0.000000 | 0.665616 | Case 1 is an ideal case. Each type of source (high, medium and normal priority sources) generates traffic at the rate equal to the bandwidth assigned by the scheduler. Therefore, there is no significant network congestion at the edge Diffserv router. As seen in Table 2, the goodput of each source is almost the same as its traffic generation rate. From Table 3, the drop ratio of each type of sources is zero. Figure 7 shows the queuing performance of each queue. Because this is an ideal case, the size of each queue is very small. Though the three queues have almost the same average size, we observe that the normal priority queue (mapping to BE queue, according to the mapping function) has the largest jitter. delay). Figure 7: Queue size plots for Case 1 Figure 8: Queue size plots for Case 2. In case 2, we increased the traffic generation rate of normal priority sources, keeping the rates of the other two types of traffic unchanged. The traffic generating rate of each normal priority source is set to 0.6Mb. In this case, the normal priority traffic gets congested. As shown by Table 3, the drop ratio of normal priority traffic is greatly increased. However, drop ratio for the other two sources still remain at zero. As seen in Table 2, the goodput of normal priority traffic for each source is only about 0.2Mb, instead of the traffic generation rate of 0.6Mb. The reason is that the total available output bandwidth of normal priority traffic has been assigned to 1Mb by scheduler. From Figure 8, we find that the average queue size of the normal priority queue is far greater than the other two types of sources. In addition, the jitter of normal priority traffic is also greater than the other two types of sources. The high priority traffic has the smallest average queue size and the smallest jitter. Case 3 is very similar to case 2. The only difference is that the medium priority traffic, rather than normal priority traffic, gets into congestion. As expected, we find the drop ratio of medium priority traffic is increased with other two traffic types remaining at zero, and the goodput is also limited by the output link bandwidth assigned by the scheduler (which is 2Mb). From Figure 9, we find that both the jitter and the average queue size of medium priority traffic are far greater than the other two traffic types. The high priority traffic has the smallest average queue size and the smallest jitter. In Case 4, we increased the traffic generation rates of both medium and normal priority sources. Both of them get into network congestion in this case. We find from Table 3 that the drop ratio of high priority traffic remains at zero, and drop ratios of both medium priority traffic and normal priority traffic are greatly increased. Furthermore, the drop ratio of normal priority traffic is greater than that of medium priority traffic. As shown by Table 2, the goodput of both the medium and normal priority traffic are limited by their link bandwidths allocated by scheduler. From Figure 10, we see that the normal priority traffic has both the biggest jitter and biggest average queue size. We can also find that the high priority traffic has both the smallest jitter and smallest average queue size. From the above results, we can arrive at the following observations: Figure 9: Queue size plots for Case 3 Figure 10: Queue size plots for Case 4 - The high priority traffic always has the smallest jitter, the smallest average queue size and the smallest drop ratio without being affected by the performance of other traffic. In other words, the high priority traffic receives the highest priority, which satisfies the priority requirements of ATN. - The medium priority traffic has smaller drop ratio, jitter and queue size than the normal priority traffic, even in the presence of network congestion. This also satisfies the priority requirements of ATN. We therefore, conclude that the priority requirements of ATN can be successfully achieved when ATN traffic is mapped to the DiffServ domain in next generation Internet. # 6 Conclusion In this paper, we have proposed DiffServ as the backbone network to interconnect ATN subnetworks. We have designed a mapping function to map traffic flows coming from ATN with different priorities (indicated by the *priority* field in ATN packet header) to the corresponding PHBs in the DiffServ domain. The proposed scheme has been studied in detail using simulation. It has been found that the QoS requirements of ATN can be achieved when ATN runs over DiffServ. We have illustrated our scheme by mapping ATN traffic of three different priorities to the three service classes of DiffServ. The ability of our scheme to provide QoS to end ATN applications has been demonstrated by measuring the drop ratio, goodput and queue size. We found that the high priority ATN traffic has the smallest jitter, the smallest average queue size and the smallest drop ratio, and is unaffected by the performance of other traffic. Moreover, the medium priority ATN traffic has a smaller drop ratio, jitter and queue size than the normal traffic, even in the presence of network congestion. # References - [1] ATNP, "ATN SARPs 2nd edition." Final Editor's drafts of the ATN SARPs, December 1999. - [2] R. Braden, D. Clark, and S. Shenker, "Integrated services in the internet architecture: an overview." RFC 1633, June 1994. - [3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An architecture for differentiated services." RFC 2475, December 1998. - [4] ATNP, "Comprehensive ATN manual (CAMAL)." Final Editor's drafts of the ATN Guidance Material, January 1999. - [5] H. Hof, "Change proposal for improved text on the ATN priority architecture." ATNP/WG2/WP174, October 1995. - [6] K. Nichols, S.Blake, F. Baker, and D.Black, "Definition of the differentiated services field (DS field) in the IPv4 and IPv6 headers." RFC 2474, December 1998. - [7] Y. Bernet, S. Blake, D. Grossman, and A. Smith, "An informal management model for diffserv routers." draft-ietf-diffserv-model-04.txt, July 2000. - [8] V. Jacobson, K. Nichols, and K. Poduri, "An expedited forwarding PHB." RFC 2598, June 1999. - [9] J. Heinanen, F. Baker, W. Weiss, and J. Wrocławski, "Assured forwarding PHB group." RFC 2597, June 1999. - [10] VINT Project U.C. Berkeley/LBNL, "ns v2.1b6: Network simulator." http://www-mash.cs.berkeley.edu/ns/, January 2000. - [11] S. Floyd and V. Jacobson, "Random early detection gateways for congestion avoidance," IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-413, August 1993. | • | | | |---|--|--| | | | | | | | | | | | | | | | | | | | | | | | | | , | | | | | | | | | | | # REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highery State 1204 Adjoint N. 4. 2220.2430.2 and to the Office of Management and Budget Paperwork Beduction Project (0704-0188), Washington DC 20503. | | s Highway, Suite 1204, Anington, VA 22202-430. | | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------|---------------------------|------------------------------------------|--| | 1. 4 | AGENCY USE ONLY (Leave blank) | 2. REPORT DATE | 3. REPORT TYPE AN | | | | | | March 2001 | 10 | echnical Memorandum | | | 4. | TITLE AND SUBTITLE | | | 5. FUNDING NUMBERS | | | | Achieving QoS for Aeronautical | Telecommunication | | | | | l | Networks Over Differentiated Se | | | | | | | Networks Over Differentiated Se | ivices | | WU-322-20-2A-00 | | | 6. | AUTHOR(S) | | | W U-322-20-2A-00 | | | | | | | | | | | Haowei Bai, Mohammed Atiquz. | zaman, and William Ivanc | ic | | | | | | | | | | | 7 1 | PERFORMING ORGANIZATION NAME(S | S) AND ADDRESS(ES) | | 8. PERFORMING ORGANIZATION | | | ٠ | | | | REPORT NUMBER | | | | National Aeronautics and Space | | | | | | | John H. Glenn Research Center a | nt Lewis Field | | E-12684 | | | | Cleveland, Ohio 44135-3191 | | • | | | | | | | | | | | | SPONSORING/MONITORING AGENCY | JAME(S) AND ADDRESS(FS) | | 10. SPONSORING/MONITORING | | | 9 | SPONSONING/MONITORING AGENCY | TAME(3) AND ADDITECTOR | | AGENCY REPORT NUMBER | | | | National Aeronautics and Space | Administration | | | | | | Washington, DC 20546-0001 | | | NASA TM—2001-210754 | | | | Washington, DC 20340-0001 | | | 141611111 2001 21073 | | | | | | | | | | 11 | SUPPLEMENTARY NOTES | | | | | | • • • • • • • • • • • • • • • • • • • • | Haowei Bai and Mohammed Atio | ouzzaman. Department of | Electrical and Computer | Engineering, The University of | | | | Dayton Dayton Ohio 45469-02 | 26 (work funded by NAS) | A Grant NAG3–2318): a | nd William Ivancic, NASA Glenn | | | | Research Center. Responsible pe | rson William D. Ivancic | organization code 5610 | 216-433-3494 | | | | Research Center. Responsible pe | 15011, ***111111111 2: 1**11111111, | | | | | | | | | | | | 12a | . DISTRIBUTION/AVAILABILITY STATE | MENT | | 12b. DISTRIBUTION CODE | | | | Unclassified - Unlimited | | | | | | | | Distril | oution: Nonstandard | | | | | Subject Category: 17 | Distri | button: Nonstanuaru | | | | | Available electronically at http://gltrs. | erc.nasa.gov/GLTRS | | | | | | This publication is available from the | NASA Center for AeroSpace Ir | formation, 301-621-0390. | | | | 13. | ABSTRACT (Maximum 200 words) | | | | | | | | | | | | | Aeronautical Telecommunication Network (ATN) has been developed by the International Civil Aviation Organization to integrate Air-Ground and Ground-Ground data communication for aeronautical applications into a single network serving | | | | | | | | integrate Air-Ground and Ground | l-Ground data communica | tion for aeronautical app | olications into a single network serving | | Aeronautical Telecommunication Network (ATN) has been developed by the International Civil Aviation Organization to integrate Air-Ground and Ground-Ground data communication for aeronautical applications into a single network serving Air Traffic Control and Aeronautical Operational Communications. To carry time critical information required for aeronautical applications, ATN provides different Quality of Services (QoS) to applications. ATN has therefore, been designed as a standalone network which implies building an expensive separate network for ATN. However, the cost of operating ATN can be reduced if it can be run over a public network such as the Internet. Although the current Internet does not provide QoS, the next generation Internet is expected to provide QoS to applications. The objective of this paper is to investigate the possibility of providing QoS to ATN applications when it is run over the next generation Internet. Differentiated Services (DiffServ), one of the protocols proposed for the next generation Internet, will allow network service providers to offer different QoS to customers. Our results show that it is possible to provide QoS to ATN applications when they run over a DiffServ backbone. | 14. SUBJECT TERMS | | | 15. NUMBER OF PAGES | |---------------------------------------|------------------------------------------|-----------------------------------------|----------------------------| | | | | 24 | | Protocol; Internet | | | 16. PRICE CODE | | | | | A03 | | 17. SECURITY CLASSIFICATION OF REPORT | 18. SECURITY CLASSIFICATION OF THIS PAGE | 19. SECURITY CLASSIFICATION OF ABSTRACT | 20. LIMITATION OF ABSTRACT | | Unclassified | Unclassified | Unclassified | |